Barycentres, projections, inertie 2D, 3D et +D --- Introduction ---

Ce module regroupe pour l'instant 16 exercices sur barycentres, projections with 3 exercises translated in english

Angle of 2 vectors

Consider two vectors
u=[], v=[] of with the usual scalar product;
compute the measure (located between 0 and ) of the angle of these 2 vectors (relative precision 1/1000)

Angle de 2 vecteurs

Soient les 2 vecteurs u=[], v=[] de avec le produit scalaire usuel; calculer la mesure (située entre 0 et ) de l'angle de ces 2 vecteurs (précision relative 1/1000)

barycentre et projection affine 3D

En 4 etapes: calculez (précision 1/1000)
  1. le barycentre g des points dont les coordonées sont les colonnes de b avec les coefficients ;
  2. la projection de la première colonne sur le plan passant par et parallèle à ; (noté )
  3. le barycentre des projections; noté:
  4. la projection du barycentre g noté:

       

debug: toto=


barycentre et projection affine 7D

En 4 etapes: calculez (avec la précision du 1/1000) les 3 premieres composantes des vecteurs suivants:
  1. le barycentre g des colonnes de b avec les coefficients ;
  2. la projection de la première colonne sur le plan passant par et parallèle à ; (noté )
  3. le barycentre des projections; noté:
  4. la projection du barycentre g noté:

avec:
       

copier coller: b=[]
alpha = []
a = []
V=[]
debug: toto=


Proj, 3-6 pts inert./2dtes 2D

Calculer:
  1. Les projections des colonnes de b sur la droite passant par a et // à V
  2. l'inertie des colonnes de b par rapport à la droite passant par a et // à V avec les poids p
  3. l'inertie des colonnes de b par rapport à la droite passant par a et // à avec les poids p
  4. (précision 1/1000: absolue pour projection et valeur relative pour inertie ):

,  ,  ,  ,  ,
Faites un dessin; mesurez l'inertie à la règle; comparez avec le resultat numerique;
rédigez; rendez à votre enseignant

pour couper coller     b=[],  a=[],  V=[],  Vper=[],  p=[],
debug:, [], , []

Scalar Product of 2 vectors

Consider 2 vectors
u=[], v=[] of with the usual scalar product;
compute their scalar product (relative precision 1/1000)

Produit scalaire de 2 vecteurs

Soient les 2 vecteurs u=[], v=[] de avec le produit scalaire usuel; calculer leur produit scalaire (précision relative 1/1000)

projection sur plan affine de R 6, 4>7pt

Calculez la projection de b (en fait des colonnes de b )sur plan affine passant par a et parallèle aux colonnes de V puis calculez la somme des normes euclidiennes des colonnes de Pb et fournissez la avec une precision relative du 1/1000: debug: toto=, nbmPbV=, nbmPbamPb=

     

couper-coller avec: b=[]
a=[]
V=[]


projection sur plan vectoriel de R6, 4>7

Calculez la projection P b de b (en fait des colonnes de b ) sur le sous espace vectoriel engendré par V; puis calculez la somme des normes euclidiennes des colonnes de Pb et fournissez la avec une precision relative du 1/1000:
debogue: nbmPbV=

couper-coller avec: b=[]
V=[]


Proj./ dte aff. (vect. d.) et inertie 2D

Calculez
  1. la projection du point b (precision 1/1000) sur la droite affine passant par a et de vecteur directeur t
  2. l'inertie de b par rapport à cette droite (carré de la distance)
avec:

,   ,   ,
debug:toto=, rangabt=, [],
[], []

Faites un dessin; mesurez l'inertie à la règle; rédigez; rendez à votre enseignant

Proj, 2 pts inert./dte 2D

Calculer:
  1. Les projections des colonnes de b sur la droite passant par a et // à V
  2. l'inertie des colonnes de b par rapport à la droite passant par a et // à V avec les poids p
  3. (précision 1/1000: absolue pour projection et valeur relative pour inertie ):

,  ,  ,  ,
Faites un dessin; mesurez l'inertie à la règle; comparez avec le resultat numerique;
rédigez; rendez à votre enseignant
debug:, [], , []

Inert. 3 pts/plan 3D

Calculez (précision relative 1/1000)
  1. la première composante de la projection de la première colonne de b sur le plan affine passant par a et parallèle à V
  2. l'inertie des colonnes de b par rapport à avec:

   

copier/coller: b=[],
a=[], V=[]
debug: toto= , nb= G=[] G1=[] , Ptildebun=


Inert. 9 pts/plan 3D

Calculez (précision 1/1000)
  1. la première composante de la projection de la première colonne de b sur le plan affine passant par a et parallèle à V
  2. l'inertie des colonnes de b par rapport à avec:

Pour copier, coller: b=[],
a=[], V=[]
debug: toto= , nb= G=[] G1=[]
, Ptildebun=


projection on an affine plane of R 6

Compute the projection of b on the affine plane passing through a and parallel to the columns of V with precision 1/1000:

     

couper-coller avec: b=[]
a=[]
V=[]
debug: toto=, nbmPbV=, nbmPbamPb=


projection sur plan affine de R 6

Calculez la projection de b sur plan affine passant par a et parallèle aux colonnes de V avec la precision 1/1000: debug: toto=, nbmPbV=, nbmPbamPb=

     

couper-coller avec: b=[]
a=[]
V=[]


projection sur plan vectoriel dans R6

Calculez la projection P b de b sur le sous espace vectoriel engendré par V avec une precision du 1/1000: nbmPbV=

The most recent version


This page is not in its usual appearance because WIMS is unable to recognize your web browser.
In order to access WIMS services, you need a browser supporting forms. In order to test the browser you are using, please type the word wims here: and press ``Enter''.

Please take note that WIMS pages are interactively generated; they are not ordinary HTML files. They must be used interactively ONLINE. It is useless for you to gather them through a robot program.