OEF Suites --- Introduction ---

Ce module regroupe pour l'instant 17 exercices sur les suites infinies : convergence, limite, suites récurrentes, ...

Deux limites

Soit () une suite infinie de nombres réels. Si on a

et pour ,

que peut-on dire sur sa convergence ? (Il faut choisir la signification la plus pertinente.)


Comparaison de suites

Soit () et () deux suites de nombres réels, où () converge vers . Si on a

,

que peut-on dire sur la convergence de () ? (Il faut choisir la signification la plus pertinente.)


Croissance et borne

Soit () une suite de nombres réels. Si () est , que peut-on dire sur sa convergence (après son existence) ?

Convergence et différence de termes

Soit une suite de nombres réels. Parmi les énoncés suivants, lesquels sont vrais, lesquels sont faux ?
  1. Si , alors .

  2. Si , alors .

Convergence et rapport de termes

Soit une suite de nombres réels. Parmi les énoncés suivants, lesquels sont vrais, lesquels sont faux ?
  1. Si , alors .

  2. Si , alors .

Epsilon

Soit une suite de nombres réels. Qu'est-ce que la condition

implique sur la convergence de  ? (Il faut choisir la signification la plus pertinente.)


Fraction 2 termes

Calculez la limite de la suite (un), où


Fraction 3 termes

Calculez la limite de la suite (un), où


Fraction 3 termes II

Calculez la limite de la suite (un), où

ATTENTION Dans cet exercice les réponses approximatives seront jugées comme fausses ! Tapez pi au lieu de 3.14159265, par exemple.


Comparaison de croissance

Quelle est la nature de la suite (un), où

 ?


Limites : fonctions trigonométriques

Quelle est la nature de la suite

Monotonie I

Etudiez la croissance, sup, inf, min, max de la suite (un) pour n ge , où

.

Ecrivez pour une valeur qui n'existe pas, et ou - pour +infty ou -infty.


Monotonie II

Etudiez la croissance, sup, inf, min, max de la suite (un) pour n ge , où

.

Ecrivez pour une valeur qui n'existe pas, et ou - pour +infty ou -infty.


Puissances I

Calculez la limite de la suite (un), où


Puissances II

Calculez la limite de la suite (un), où

Tapez non si la suite est divergente.


Fonction de récurrence

La suite telle que
est une suite récurrente définie par pour une certaine fonction . Trouver cette fonction.

Limite récurrente

Trouver la limite de la suite récurrente telle que

Other exercises on: Sequences   Limit   Convergence  

The most recent version

This page is not in its usual appearance because WIMS is unable to recognize your web browser.
In order to access WIMS services, you need a browser supporting forms. In order to test the browser you are using, please type the word wims here: and press ``Enter''.

Please take note that WIMS pages are interactively generated; they are not ordinary HTML files. They must be used interactively ONLINE. It is useless for you to gather them through a robot program.