!! used as default html header if there is none in the selected theme. Parametric cusp

# Parametric cusp --- Introduction ---

Recall. A cusp of a plane parametric curve

x = f (t) , y = g(t)

is a singular point for a value t0 of t, characterized by the simultaneous conditions

f '(t0) = g '(t0) = 0 .

In this exercise, your goal is either to find a cusp in a given parametric curve, or to determine the parametric curve having a given cusp.

This exercise accepts several configuration parameters which determine the aspect and the level of difficulty of the problem asked.
• Values to determine:
• Tolerance of error: (This tolerance should be between 0.000001 and 0.01.)
Other exercises on:

In order to access WIMS services, you need a browser supporting forms. In order to test the browser you are using, please type the word wims here: and press Enter''.

Please take note that WIMS pages are interactively generated; they are not ordinary HTML files. They must be used interactively ONLINE. It is useless for you to gather them through a robot program.

• Description: parametrize a parametric curve so that it has a cusp. serveur web interactif avec des cours en ligne, des exercices interactifs en sciences et langues pour l'enseigment primaire, secondaire et universitaire, des calculatrices et traceurs en ligne
• Keywords: math, interactif, exercice,qcm,cours,classe,biologie,chimie,langue,interactive mathematics, interactive math, server side interactivity,exercise,qcm,class, geometry, analysis, curve, parametric curve, cusp, singularity